
1 Sriram Srinivasan (© 1999)

What is Perl?

• Perl: Practical Extraction and Report Language

• An interpreted language by Larry Wall

♦ similar to C, csh, sh, sed, awk

• "A shell for C programmers"- Larry Wall

2 Sriram Srinivasan (© 1999)

Aaargh - not another language !

• So, why should I use Perl

♦ Much faster than shell script equivalents

♦ Less syntax than all other tools of which it is a superset.

− More consistent, and more options

♦ "But I like the Unix small tool philosophy"

− So do I - Perl fits in right there
− Complements other tools - you don’t have to use Perl alone

♦ Portable across many platforms

− Windows, Unix, DOS, Mac, Amiga, VMS, Cray

♦ Easy to learn

• Why shouldn’t I use Perl

♦ No reason, really. Just kidding:-)

♦ Need for fine-grained complex data structures, maximum performance. Use C.

♦ If interfaces from Perl not available

3 Sriram Srinivasan (© 1999)

Sources of Information

• Paper publications

♦ Online reference documentation - all 500+ pages

♦ "Learning Perl"- by Randal Schwartz, Tom Christiansen

♦ "Programming Perl"- Larry Wall, Randal Schwartz, Tom Christiansen

♦ "Advanced Perl Programming" - Sriram Srinivasan

♦ "Effective Perl Programming" - Joseph Hall

♦ "Perl Cookbook" - Tom Christiansen, Nathan Torkington

• Internet

♦ http://www.perl.com/

♦ comp.lang.perl.* - USENET newsgroups

• Perl modules (both built-in and from perl.com)

Perl programming: Essentials 4 Sriram Srinivasan (© 1999)

Perl programming: Essentials

Perl programming: Essentials 5 Sriram Srinivasan (© 1999)

print "hello world\n"; # An example

• All statements end with a ";"

• A block of statements is enclosed in { }

• Anything following a # is treated as a comment

• Execute this script as

♦ perl testfile.pl

♦ perl -e ’print "hello world\n"’ # On unix systems

♦ perl -e "print \"hello world\n\"" # In a dos window

Perl programming: Essentials 6 Sriram Srinivasan (© 1999)

Example : Prime numbers

1: # This program prints prime numbers from 1 .. $max

2: $max = 100;

3: print ("1\n2\n"); # Cheating .. we know 1 and 2 are prime numbers !

4: for ($i = 3; $i <= $max; ++$i) {

5: # skip if divisible by 2

6: if ($i == int ($i/2) * 2) { #int () - truncates floating pt. no.

7: next ; # "continue"

8: }

9: $s = sqrt($i);

10: if ($s == int ($s)) { next; }# If it is a perfect square, ignore

11: $isPrime = 1;

12: for ($j = 3; $j < $s; $j++) {

13: if (int($i/$j) * $j == $i) {

14: $isPrime = 0;

15: last; # "break"

16: }

17: }

18: if ($isPrime) {print "$i \n";}

19:}

Perl programming: Essentials 7 Sriram Srinivasan (© 1999)

Data Types

• Scalar

♦ A scalar variable (single-valued variable) can contain string or a number

♦ Prefixed by "$" – $x, $VariableNameCanBeAsLongAsYouWant

• Indexed Arrays / Lists

♦ An ordered list of scalars (mixed string and numeric values)

♦ Keys are integers (0 based)

♦ Supports both array and list semantics

♦ Prefixed by "@"

• Associative Arrays

♦ An array of scalars (mixed string and numeric values)

♦ Keys are strings. No concept of base, since no ordering.

♦ Prefixed by "%"

• Barewords (no prefix symbol) – Treated as a string (scalar)

Perl programming: Essentials 8 Sriram Srinivasan (© 1999)

Scalar data: Operations

• Treated as a string or number depending on expression context

♦ Numeric values stored internally as doubles

♦ Strings are ascii, but Unicode if "use utf8" is invoked.

• Numeric Operations

♦ Arithmetic operators: + - / * += -= *= /= % ** ++ --

$a = 123; $a++;

$b += 123; # Evaluated numerically

$b = $a + "456"; # "456"converted to number, and then added

♦ Math library functions: log, exp, sin

$b = sin($a); # or $b = sin $a;

♦ Comparison operators: ==, <=, >=, <, >, <=>

if ($a == 456) ... # Comparison evaluated numerically

$b = $a <=> 100; # $b is -1, 0, or +1

Perl programming: Essentials 9 Sriram Srinivasan (© 1999)

String Operations

• Concatenation – "."

♦ $a = 123; $b = $a . "456"; # $b becomes "123456"

• String repetition – "x"

♦ $a = "abc" x 3; # $a becomes "abcabcabc";

• String Comparison operators – eq, ne, lt, gt, le, ge, cmp

♦ if ($a eq 456); # both sides converted to string before comparison

• Interpolation

♦ $s = "and"; $str = "click $s clack"; # str => "click and clack"

• Extracting substrings: substr

$a = substr("Hello World", 2, 5); # $a gets "llo W"

♦ First character is at index 0.

♦ Can be used as an "lvalue"

substr ($str, 1, 4) = "abcde";

Perl programming: Essentials 10 Sriram Srinivasan (© 1999)

String Operations (contd.)

• String indexing: index, rindex

$a = index ("Hello World", "llo"); # $a gets a value of 2.

• chop, chomp

♦ chop ($a); # Chops and returns the last char in the string

♦ chomp ($a); # eqvt. to chop($a) only if it is a ’\n’;

• Changing case

♦ uc ($a); lc($a) #Converts entire string to upper(lower) case

♦ $a = "abc\U$b\Edef";#\U operator upcases string until \E (or end)

♦ ucfirst ($a); #Upper cases the first character in $a. Or use \u

♦ lc, lcfirst, or \L, \l operators for lower case

• Length of string

♦ $x = length ($a);

Perl programming: Essentials 11 Sriram Srinivasan (© 1999)

Basic Control Structures

• Loops

♦ while (condition is true) {
....

}

♦ for (initialization ; condition ; increment) {
....

}

− identical to the "for"statement in C.

♦ Condition == false if scalar is undefined or 0-length string or has value 0.

• Loop Terminators

♦ next – same as "continue" in C.

♦ last – same as "break" in C.

• if () {
} elsif (...) {
} else {
}

• Always use curly braces

Perl programming: Essentials 12 Sriram Srinivasan (© 1999)

Example : Reversing a string

1: $str = "gnimmargorP lreP";

2: $revStr = "";

3: while ($str) {

4: $revStr .= chop ($str);

5: }

6: print "$revStr \n";

• Remember the Perl motto : "There’s more than one way to do it"

Perl programming: Essentials 13 Sriram Srinivasan (© 1999)

File I/O

• Reading from files: open

open (F, "/tmp/x"); # F is a filehandle - opened for read

open (FW, "> /tmp/x"); # open /tmp/x for writing

• Reading from filehandle: <filehandle>

$x = <F>; # reads one line at a time (with newline)

while ($x = <F>) {print $x}; # Types out entire file.

• Writing: print filehandle comma-separated-list

print FW "Name", "Sriram" # Or print FW ("Name", "Sriram")

printf FW "%d%s", $x, $y; # formatted OUTPUT. Note: no ","after FW

• Closing

♦ close (FW);

• STDIN, STDOUT, STDERR – standard filehandles

Perl programming: Essentials 14 Sriram Srinivasan (© 1999)

Example: FIle I/O

1: if (!open (FW, "> /temp/myfile")) {

2: print STDERR "Could not open file";

3: exit(1);

4: }

5: $i = "Hello";

6: $j = 10;

7: print FW ("$i $j \n"); # or printf FW ("%s %d\n", $i, $j);

8: close(FW);

Perl programming: Essentials 15 Sriram Srinivasan (© 1999)

Exercise 1: Spell Checker

• Write a spell checker

• Run it as perl spellcheck.pl

• Script should ask for the word to be checked.

• It should open the file "dictionary" to cross-check this word.

• The dictionary file has lots of valid words, one on each line, like
this:

Ababa
aback
abacus
abalone
abandon
abase

• Case is not important.

• Dictionary is in sorted order.

Perl programming: Essentials 16 Sriram Srinivasan (© 1999)

Opening pipes

• Can set up command pipelines with open

open (C, "/bin/cal 4 2001|");

while ($line = <C>) {

 print ">> $line";

}

close(C);

♦ Output:
 >> April 2001
 >> S M Tu W Th F S
 >> 1 2 3 4 5 6 7
 >> 8 9 10 11 12 13 14
 >> 15 16 17 18 19 20 21
 >> 22 23 24 25 26 27 28
 >> 29 30
 >>

Perl programming: Essentials 17 Sriram Srinivasan (© 1999)

Perl debugger

• Source code debugger

♦ perl –d script_file

• Commands

Command Description Command Description

s Single step p expr evaluate and print
perl expression

n Single step, over
subroutine calls

< command
> command

Define command
before (or after)
prompt

l [line] | [sub] list line or subroutine ! number history – redo cmd

b [line] [condition] set breakpoints command Execute as perl stmt.

a [line] command Set an action to be
done before line is
executed

/pattern/
?pattern?

Search fwd
Search bwd

Perl programming: Essentials 18 Sriram Srinivasan (© 1999)

On Regular Expressions

• Problem: Search mail file for all subject lines containing "perl"

♦ Pseudo code:
open (F, "C:/eudora/in.mbx");
while ($line = <F>) {

if ($line matches "Subject: ...junk ... perl") {
 print $line;
}

}

Note that you can’t use "eq" in place of matches.

• "Regular Expressions": Templates or patterns for string matching

♦ Operators like eq, ne and functions such as substr, index do exact string
comparisons.

♦ Operators =~ and !~ do "matches" and "doesn’t match"

♦ Regular expressions are used for fuzzy matches

Perl programming: Essentials 19 Sriram Srinivasan (© 1999)

Regular Expressions: Contd.

• Regular Expression meta-characters – standard ones

• if ($line =~ /^Subject:.*perl/) {
print $line;

}

^ At beginning of line $ At end of line

. Any character (except newline) + One or more of the previous
character or expression

? Zero or one of the previous
character or expression.

[] Match a set of characters

* Zero or more of the previous
character or expression

[^] Match only if doesn’t belong to the
set of characters specified

() Start a sub-expression {m,n} Matches m to n occurences of the
previous character or expression.

| Or \ Treat next character as literal

Perl programming: Essentials 20 Sriram Srinivasan (© 1999)

Perl additions

• Pre-built sets

♦ \b – Word boundary

♦ \d, \D – any digit ([0-9]), not a digit ([^0-9])

♦ \w, \W – alphanumeric character ([A-Za-z_0-9]), non alphanumeric character*

♦ \s – any visible space character (spaces, tabs, line-feeds)

• Patterns are treated as double quoted strings

♦ if ($line =~ /\b$word\b/) {print "$word found"}

• Options – i, m, s, x

♦ /i : Ignore case – if ($line =~ /\b$word\b/i) { .. }

♦ /m : Treat string as multiple lines

♦ /s : Treat string as single line

♦ /x : Use extended regular expressions.

♦ /o : Compile pattern once

Perl programming: Essentials 21 Sriram Srinivasan (© 1999)

Regular Expressions: Memory

• Use parentheses to extract portions of matched text

if (!open (F, "Inbox")) {exit (1);}
while ($line = <F>) {
 if ($line =~ /^From: (\w+)\@weblogic.com/) {
 print $1, "\n";
 }

}

• Extracted portions are available for use later in the same regex

My red bat is red

My green ball is green

My red ball is red

♦ if ($line =~ /^My (red|blue|green) (bat|ball) is \1/) {
$color = $1; $object = $2;

}

♦ \1 – \9 available within regular expressions; $1 – $9 outside

Perl programming: Essentials 22 Sriram Srinivasan (© 1999)

Pattern Substitution

• "If pattern exists in a string, substitute matched portion with
another string"

♦ $var =~ s/regex/substitute string/

♦ Note that $var is modified, if its contents match regex

• Examples

$str = "Mom & Pop";

$str =~ s/Pop/Me/ ; #$str becomes "Mom & Me"

$str =~ s/o[mp]/a/g; #global substitution "Ma & Pa";

$str =~ s/[mp]/b/gi; #global and ignore case -> "bob & bob"

$str =~ s/([A-z]+) & ([A-z]+)/$2 & $1/; #swap -> "Pop & Mom"

• Additional substitution options

♦ g – replace globally

♦ e – Evaluate the right side as an expression

♦ x – Extended regular expressions

Perl programming: Essentials 23 Sriram Srinivasan (© 1999)

Translation

• Supplying a character to character translation

♦ tr/search list/replacement list/cds

♦ $s = "zorba the greek"; $s =~ tr/gk/cp/; # "zorba the creep"

♦ $s =~ tr/A-Z/a-z/; # lower case entire string

♦ $s =~ tr/a-mn-z/n-za-m/ # Rot 13.

• The tr/// operator returns the count of translations

♦ $count = ($s =~ tr/a-mn-z/n-za-m/);

• Options

♦ /c : Complement the search list

♦ /d : Delete found but unreplaced characters

♦ /s : Squash duplicate replaced characters

Perl programming: Essentials 24 Sriram Srinivasan (© 1999)

To summarize ...

• Scalar data types introduced

• Functions to manipulate strings of characters

• Regular Expressions

• Substitution

• File I/O, pipes

Perl programming: Essentials 25 Sriram Srinivasan (© 1999)

Arrays of scalars

• Arrays are multi-valued (as opposed to scalar data types)

♦ @a = ("123", 3, 4.44455, ’11122’, $b);

♦ @b = @a;

• Accessing one element – each element is a scalar

♦ Starting index is 0.

♦ $x = $a[2]; # $x gets 4.44455

♦ Note the ‘$’ in $a[2] – each element in an array is a scalar, hence the ‘$’

♦ This is a scalar assignment – scalar to scalar

• Array slices – accessing multiple elements

♦ @tempArray = @a [1, 2, 4]; # @tempArray gets (3, 4.44455, $b)

♦ ($a, $b, $c) = @a [1,2,5]; ($a, $b, $c) = ($d, 12, $e);

• Assigning to a scalar variable

♦ $x = @a; # $x gets the count of elements.

♦ This is a list to scalar assignment

Perl programming: Essentials 26 Sriram Srinivasan (© 1999)

Arrays/Lists: Operations

• Insertion, Removal of elements

♦ push (@aList, @bList); # Appends @bList to @aList

♦ push (@aList, "123", 3333, ’a’, $x);

♦ pop (@aList); # removes and returns last element from @aList

♦ unshift (@aList, "234 ", 4444); # Prepends list to @aList

♦ shift (@aList); #removes and returns first element from @aList

• Rearranging elements

♦ sort @aList; # Returns an alphabetically sorted list

♦ reverse (@aList); # returns a new list with the order reversed

Push

Pop Shift

Unshift

Perl programming: Essentials 27 Sriram Srinivasan (© 1999)

More control structures

• foreach

♦ foreach $e (@mylist) {
print $e;

}

• Equivalent constructs

♦ print "DEBUG" if $debugging; # Note, no braces.

♦ do { $x = $x**3 } while $x < 100;

♦ until ($x > 100) { $x = $x**3 } # eqvt. to "while (!condition)"

♦ unless ($x < 10) { } # eqvt. to "if (!condition)"

• ||, && as control structures

♦ open (F, "/tmp/x") || die "no such file \n";

Second argument of "||"evaluated only if the first part returned false (a non-zero
value)

• There is no switch/case statement

Perl programming: Essentials 28 Sriram Srinivasan (© 1999)

Associative Arrays

• Hash table implementation

♦ Stores both key and value. Key is always a string, and value can be any scalar.

♦ Variables identified by "%" prefix. Indexing operator is "{ }"

• Examples

♦ $capitalOf{"USA"} = "Washington"; %copy = %capitalOf;

♦ $populationOf{"India"} = 45;

♦ $aa[123] = 45; # Gotcha – "aa " here is a list, not an associative array.

• Accessing one element – each element is a scalar

♦ $x = $bb{"abc"};

♦ This is a scalar assignment – scalar to scalar

• Hash slice: Accessing multiple elements at a time

♦ @capitals = @capitalOf{"USA", "India"}; # Note @ prefix.

USA Washington
India New Delhi

Perl programming: Essentials 29 Sriram Srinivasan (© 1999)

Associative Arrays: Operations

• keys

♦ @list = keys (%array);

• values

♦ @list = values (%array);

♦ print (sort (values %array));

• each

♦ "each" returns a (key, value) pair every time it is called. At the end it returns an
empty list, and resets itself.

♦ while (($key, $value) = each %myArray) { #Note - list assignment
print "$key: $value \n";

}

Perl programming: Essentials 30 Sriram Srinivasan (© 1999)

Conversion from one data type to another

• Creating an array from a scalar and vice-versa

♦ split: extracting arrays from scalars

@a = split (/,\s+/, "abc, def, ghi"); # Comma separated list

($user, $password) = split (/:/, $line); # $line from /etc/passwd

♦ join: combining elements of an array to yield a scalar

$s = join ("::", ("abc", "def", "ghi"));

$s = join ("::", @l);

• An associative array from an array or list and vice-versa

♦ Assigning list to associative array: each pair of values is treated as a key and a
value.

%capitalOf = ("USA", "Washington", "Colombia", "Bogota");

♦ @names = %capitalOf; # "Flattens" the table in no particular
order of keys.

Perl programming: Essentials 31 Sriram Srinivasan (© 1999)

Context

• Most functions work with lists and scalars.

♦ chop (@foo); # Chops the last character of all elements in foo.

• The left hand side specifies a LIST or SCALAR context

♦ Automatic conversion to required context

open (F, "address.doc");
@list = <F>; # @list gives the <> operator a list context, and

ends up slurping in the entire file, one row per
list element ($list[0] contains the first line)

close(F);

• Sub contexts

♦ Scalars can be treated as numbers, character strings, or binary strings depending
upon the function.

Perl programming: Essentials 32 Sriram Srinivasan (© 1999)

Functions

• Declaring a function

♦ sub func {
.....

}

• Calling a function

♦ func(); myProc ($x, "hello"); # old style - &func;

♦ myProc($x, "hello")

• Argument processing (inside a function)

♦ Function always sees parameters passed to it in @_ array

♦ That is, in $_[0], $_[1], $_[3] etc.

• Local Variables

♦ my ($count); #lexical scoping

♦ local (@tempArray); #dynamic scoping

♦ my ($a, $b, @c) = @_; # Useful pattern to give names to args

Perl programming: Essentials 33 Sriram Srinivasan (© 1999)

Example: Context grep

• cgrep – Search for a regular expression in a file, and print it along
with a couple of lines before and after it (context)

asfa aslkdf alskfj a;lkja dfsladfjl

slkjdf laksdf lkelkj dsf lkja dfl

if0akjser werll df-09234;lkf ksdflk

asfa aslkdf alskfj a;lkja dfsladfjl

slkjdf laksdf lkelkj dsf lkja dfl

if0akjser werll df-09234;lkf ksdflk

if0akjser werll df-09234;lkf ksdflk

slkjdf laksdf lkelkj dsf lkja dfl

Matching line
Moving logical
window (@win)

($currLine)

Perl programming: Essentials 34 Sriram Srinivasan (© 1999)

Example: Context grep

1: use strict;

2: # This script is similar to egrep, and in addition to displaying all

3: # those lines that match, it displays a couple of lines above and below

4: # it (the context).Example: perl cgrep.pl -2 incl /usr/include/*.h

5: my (@win, $line, $fileName, $pattern);

6: my $cLines = 3;

7:

8: if ($ARGV[0] =~ /^-(\d*)/) {

9: $cLines = $1;

10: shift (@ARGV);

11:}

12:$pattern = shift @ARGV;

13:while ($fileName = shift @ARGV) {

14: open (F, $fileName) || die("Could not open $fileName: $! \n");

15: print ("=" x 70, "\n", $fileName, "\n", "=" x 70, "\n");

16: # @win maintains the context: the previous $cLines, the current

17: # line and the next couple of lines. The current line is always the

18: # middle element of @win. Prime this array.

19: my $i;

Perl programming: Essentials 35 Sriram Srinivasan (© 1999)

20: for ($i = 0; $i < $cLines; $i++) {$win[$i] = "";}

21: $win[$cLines] = <F>; # if cLines==2,$win[2] is first line

22: for ($i = 0; $i < $cLines; $i++) {

23: $line = <F>;

24: push (@win, $line); # Prime $win[3],[4] with next lines

25: }

26: # Now, $win[2], [3],[4] have the first three lines of the file.

27: while ($line = $win[$cLines]) {

28: if ($line =~ /$pattern/o) {

29: #Print lines before the center line

30: for ($i = 0; $i < $cLines; $i++) {print $win[$i];}

31: chop($line); # Print the center line

32: print("$line <<<<<<<<<<<<<<<<<<<<<<<<\n");

33: #Print lines after the center line

34: for ($i = 1 ; $i <= $cLines; $i++) {

35: print $win[$cLines+$i];

36: }

37: print "-" x 70, "\n";

38: }

39: shift (@win); #Move top line out of window ...

40: $line = <F>;

41: if (defined($line)) {

Perl programming: Essentials 36 Sriram Srinivasan (© 1999)

42: push (@win, $line); # ... and append new line from file

43: } else {

44: push (@win, "");

45: }

46: }

47: close (F);

48:}

• Sample Output

C:\temp>perl -w cgrep.pl -2 chop cgrep.pl

===
cgrep.pl
==
 Print lines before the center line
 for ($i = 0; $i < $cLines; $i++) {print $win[$i];}
 chop($line); # Print the center line<<<<<<<<<<<<<<<<<<
 print("$line <<<<<<<<<<<<<<<<<<<<<<<<\n");
 #Print lines after the center line
--

Perl programming: Essentials 37 Sriram Srinivasan (© 1999)

Gotchas

• Scalar vs. Array – Using "$"and "@"properly.

• Strings and Numbers – comparison operators

♦ String comparisons – eq, ne, le, etc.

♦ Numeric comparisons – ==, <, > etc.

• Always run "perl -w" on new scripts.

♦ Will catch reads from uninitialized variables

Perl programming: Essentials 38 Sriram Srinivasan (© 1999)

Exercise 2 (5 minutes)

• Given a (tab separated) TV trivia file,

Jason Alexander Seinfeld
Alex Trebek Jeopardy
Lisa Kudrow Friends

sort by last name and print.

Perl Programming: The next few steps 39 Sriram Srinivasan (© 1999)

Perl Programming: The next few steps

Perl Programming: The next few steps 40 Sriram Srinivasan (© 1999)

Built-in/Default Variables

• $_

♦ Most Perl operations either operate on, and/or return "$_", by default

• @ARGV – arguments passed to the script

♦ Access as $ARGV[0], $ARGV[1] etc.

• %ENV – array of environment variables.

♦ $p = $ENV {"PATH"};

• @_

while ($_ = <FILE>) {
if ($_ =~ /^From:/) {

print $_;
}

};

while (<FILE>) {
if (/^From:/) {

print;
}

};

treated as

Perl Programming: The next few steps 41 Sriram Srinivasan (© 1999)

Quoting

• Double quotes

♦ Variables expanded, and special meaning given to \n, \t, \r etc.

♦ print "Total Quantity = $qty \n"; # $qty interpolated

• Single quotes

♦ No expansion of variables ("interpolation"), and no special meaning

• Back quotes

♦ Executes programs and captures their output: $x = ‘/bin/ls‘ # $x gets a
list of files

♦ Back quotes treated like double quotes

Perl Programming: The next few steps 42 Sriram Srinivasan (© 1999)

Quoting: Contd.

• Using other quoting symbols for regular expressions, and
substitution expressions

♦ Can use m"From:" instead of /From:/

♦ For substitutions, the first character after "s" is taken as the delimiter -
s/xxx/yyy/ can be written as s#xxx#yyy#

♦ Typically, you’d choose a character that isn’t likely to occur in the regular
expression.

• Quoting words.

♦ Instead of saying (’goodbye’, ’cruel’, ’world’, ’@#$#$#’),
you could say qw(goodbye cruel world @#$#$#)

♦ qw extracts words out of a line, with white-space characters as delimiters

Perl Programming: The next few steps 43 Sriram Srinivasan (© 1999)

Example: Quoting

1: # This code shows the different types of quoting mechanisms

2: # It prints out an indented calendar, btw ..

3: $dt = ‘date‘; # date prints out, say, "Tue Feb 6 21:29:08 PST 1996"

4: chop ($dt);

5: @splitDt = split (m{ +},$dt);

6: $year = $splitDt[5]; #Extract the last word - "1996"

7: $header = "This is the calendar for $year\n";

8:

9: # Trying to act smart here ! Capture the output of ‘cal 1996‘

10:# into $cal_output, then globally substitute the first character

11:# of each line by 10 spaces + that character.

12:$cal_output = $header . ‘cal $year‘; # Capturing cal's output

13:# Indent every line by 30 spaces

14:$indent = " " x 10;

15:# Note the ’m’ option to the substitute

16:$cal_output =~ s|^(.)|$indent$1|mg; # "|" used as delimiting symbol

17:print $cal_output;

Perl Programming: The next few steps 44 Sriram Srinivasan (© 1999)

Argument Processing

• Arguments to a perl script in the @ARGV array.

• Processing the @ARGV array

♦ foreach $a (@ARGV) {
....

}

♦ The shift operator shifts the ARGV array by default (or @_ inside a sub)

• <> operator

♦ Equivalent to treating all arguments as files, and reading them one after another

− while ($a = <>) { # a simple "cat" equivalent
print $a;

}

♦ Defaults to STDIN

♦ Beware of array contexts – all files slurped in

− @a = <>; # Check if you really want to do this

♦ Built-in filehandle ARGV set to currently open file

Perl Programming: The next few steps 45 Sriram Srinivasan (© 1999)

File processing

• File tests

♦ if (-e "/etc/passwd") { ..} # File /etc/passwd exists?

♦ $a = (-d $x) && (-w "$x/$y"); # =1, if $x is a dir and
 # $x/$y is writable

• stat

• chown, chmod, unlink, rename ..

• filename wild cards.

♦ @files = <*.bak>; # <> syntax overloaded

♦ unlink <*.o>; # <> works as a wild-expander where it counts.

Perl Programming: The next few steps 46 Sriram Srinivasan (© 1999)

Directory Access

• opendir ()

opendir (D, "/tmp") || die "No such directory\n";

• readdir ()

while ($f = readdir(D)) {
if (-d $f) {

print "$f Directory \n";
} else {

print "$f \n";
}

}

• mkdir, chdir

$f = "/tmp/xx";
mkdir ($f);
chdir ($f);

Perl Programming: The next few steps 47 Sriram Srinivasan (© 1999)

Example: Pretty printed directory tree

1: # This script prints out a directory tree

2: # Invoke as "perl dirtree.pl [directory name]

3: $dirName = ".";

4: if (@ARGV) {

5: $dirName = shift @ARGV;

6: }

7:

8: $currLevel = 0; # current indentation level

9: PrintDir ($dirName);

10:

11:sub PrintDir {

12: my ($dirName) = @_;

13: my (@files);

14:

15: $spaces = " " x ($currLevel * 4); # Spacing for indenting

16: print ("$spaces$dirName\n");

17:

18: $spaces = " " x (++$currLevel * 4);

19: if (!opendir (D, $dirName)) {

Perl Programming: The next few steps 48 Sriram Srinivasan (© 1999)

Example: Pretty printed directory tree (contd.)

20: warn "Problem with \"$dirName\": $! \n";

21: --$currLevel;

22: return 1;

23: }

24: @files = readdir(D);

25: close(D);

26: foreach $f (@files) {

27: if (($f eq ".") || ($f eq "..")) {

28: next;

29: }

30: if (-d "$dirName/$f"){

31: PrintDir ("$dirName/$f"); # Recursive call

32: } else {

33: print ("$spaces$f\n");

34: }

35: }

36: --$currLevel;

37: return 0;

38:}

Perl Programming: The next few steps 49 Sriram Srinivasan (© 1999)

Run-time code – Using eval

• Used to produce code on-the-fly, and execute it

• eval $str – Treating $str as a little perl program

• Examples

♦ $str = ’$c = $a + $b’; #Note single quotes

$a = 10; $b = 20;

eval $str;

print $c;

♦ Evaluating perl one-liners

while ($line = <>) {

eval $line;

if ($@) {print $@};

}

Perl Programming: The next few steps 50 Sriram Srinivasan (© 1999)

Example: Using eval to rename multiple files

• Usage: rename.pl perl-expression [files]
1: #!/opt/bin/perl

2: $code = shift (@ARGV);

3: foreach $name (@ARGV) {

4: $oldname = $name;

5: # This is the heart of the script - a perl expression

6: # is being supplied at run time to be evaluated

7: eval ($code);

8: if ($oldname ne $name) {

9: rename ($oldname, $name);

10: }

11:}

• Usage: (command line invocation)

♦ rename.pl ’$name =~ s/\.c$/.c.bak/’ *

♦ rename.pl ’print "$name --> ${name}.bak \n"; \
 $name = $name . ".bak" ; ’ *

Perl Programming: The next few steps 51 Sriram Srinivasan (© 1999)

eval (continued)

• Rewriting "rename" – taking advantage of "$_"
1: $code = shift (@ARGV);

2: die "Usage: rename perl-expression [files]\n" if ($code eq "");

3: foreach (@ARGV) {

4: $oldname = $_;

5: eval ($code);

6: die $@ if $@;

7: rename ($oldname, $_) unless ($oldname eq $_);

8: }

• Usage simpler for simple operations

♦ perl rename.pl "s/.c/.c.bak/" *

• Error checking with special variables.

♦ $@ contains a compilation error, if an invalid perl expression was supplied.

Perl Programming: The next few steps 52 Sriram Srinivasan (© 1999)

Binary Data

• perl strings can take binary values

• pack, unpack

♦ Similar to sprintf except used for binary strings

♦ $a = -10; $b = "Hello"; $c = 4.333;
$d = pack (’i a10 d’, $a, $b, $c);
($a, $b, $c) = unpack (’i a10 d’, $d);

♦ Each template element gobbles up one value

• Exercise: Contrast between split/join, pack/unpack, sprintf

Perl Programming: The next few steps 53 Sriram Srinivasan (© 1999)

Example: Modifying tar files

csh> tar cf x.tar a.c b.c g.h

Header block
File info inside header block

File contents

Next file’s header

Each block is 512 bytes long

Each header gets its own block. The header information is binary.

The file contents get as many integral number of blocks as required

Perl Programming: The next few steps 54 Sriram Srinivasan (© 1999)

Example: Reading a tar file header (contd.)

struct tarheader {
char name[100];
char mode[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char chksum[8];
char linkflag;
char linkname[100];

} dbuf;

($name,
$mode,
$uid,
$gid,
$size,
$mtime,
$chksum,
$linkflag,
$linkname) =

unpack ("A100 a8 a8 a12 a12 a8 a1 a100",
$data);

Perl Programming: The next few steps 55 Sriram Srinivasan (© 1999)

Example : tarmodify (contd.)

• Sample usage – append .bak to every file
csh> ls /tmp

test1 test2 test3

csh> tar cf x.tar test*

csh> tarmodify ’-s/$/.bak/’ < x.tar > y.tar

• Change "test1" to "1.t" inside a tar file
csh> tarmodify ’-s/test(\d+)/\1.t/’ < x.tar > y.tar

csh> tar tf y.tar

1.t

2.t

3.t

Perl Programming: The next few steps 56 Sriram Srinivasan (© 1999)

Example : tarmodify (contd.)

1: ##

2: # tm - A script to modify names inside tar files. #

3: # Usage: #

4: # tm -s<Perl substiution command> < input.tar > output.tar #

5: # Examples : #

6: # tm -s/.c$/.c.bak/ < x.tar > y.tar (Renames all .c files to.c.bak #

7: # tm -s#^/## (Makes all absolute path names relative, by kicking out #

8: # the leading "/". #

9: # Note: #

10:# The first character after -s is used as the delimiter. #

11:# Anything that can be done in a perl substitution expression can be #

12:# done (such as ignoring case) etc. #

13:##
$BLOCKSIZE = 512;

14:if (@ARGV != 1) {

15: Usage();

16:}

17:foreach (@ARGV) {

18: if (/^-h/) {

Perl Programming: The next few steps 57 Sriram Srinivasan (© 1999)

19: Usage();

20: } elsif (/^-s(.*)/) {

21: $cmd = $1;

22: }

23:}

24:Usage() if ($cmd eq "");

25:while (($n = ProcessFileHeader()) != -1){

26: for ($i = 0; $i < $n; $i++) {

27: ReadBlock();

28: WriteBlock();

29: }

30:}

31:sub ProcessFileHeader {

32: my $n;

33: if (!(ReadBlock())) {

34: return -1;

35: }

36: ($name, $mode, $uid, $gid, $size, $mtime, $chksum,
 $linkflag, $linkname) =

37: unpack (’A100 a8 a8 a8 a12 a12 a8 a1 a100’, $data);

38: if ($name eq "") {

39: WriteBlock();

Perl Programming: The next few steps 58 Sriram Srinivasan (© 1999)

40: return 1; #One more null block to follow.

41: }

42: PrintHeader() if $debugging;

43: if (eval("\$name =~ s$cmd")) {

44: substr ($data, 0, 100) = pack ("a100", $name); # Replace name

45: #recalculate Checksum;

46: $s = sprintf ("%lo", CheckSum());

47: substr ($data, 148, 8) = pack (’a7 x’, $s);

48: }

49: $n = int (oct($size) / $BLOCKSIZE);

50: (++$n) if (oct($size) % $BLOCKSIZE);

51: WriteBlock();

52: return $n;

53:}

54:sub ReadBlock {

55: return sysread (STDIN, $data, $BLOCKSIZE);

56:}

57:sub CheckSum {

58: substr ($data, 148, 8) = " " x 8; #Blank out checksum

59: @byteArray = unpack("c*", $data);

60: $sum = 0;

61: foreach (@byteArray) {

Perl Programming: The next few steps 59 Sriram Srinivasan (© 1999)

62: $sum += $_;

63: }

64: return $sum;

65:}

66:sub WriteBlock {

67: my ($l);

68: $l = length ($data);

69: if ($l) {

70: die "LENGTH OF BLOCK ($l) != $BLOCKSIZE"

71: if ($l != $BLOCKSIZE) ;

72: return syswrite(STDOUT, $data, $BLOCKSIZE);

73: }

74: return 0;

75:}

76:sub Usage {

77: print STDERR "\n\n Usage:\n\t$0 -s/from pattern/to pattern/\n";

78: print STDERR "\t(Any character can be used in place of ’/’)\n\n";

79: exit (1);

80:}

81:sub PrintHeader {

82: print STDERR "name = $name \n";

83: print STDERR "mode = $mode \n";

Perl Programming: The next few steps 60 Sriram Srinivasan (© 1999)

84: print STDERR "uid = $uid \n";

85: print STDERR "gid = $gid \n";

86: print STDERR "size = $size \n";

87: print STDERR "mtime = $mtime \n";

88: print STDERR "chksum = $chksum \n";

89: print STDERR "linkflag = $linkflag \n";

90: print STDERR "linkname = $linkname \n";

91:}

Perl Programming: The next few steps 61 Sriram Srinivasan (© 1999)

Command line options

• Some important command line options

♦ -v print out version

♦ -w issue warnings about error-prone constructs

♦ -d run script under debugger

♦ -e for single line expressions

♦ -n loop around input, like sed

♦ -p same as above, but print out each line

♦ -i edit in place

♦ -a autosplit every input line

Perl Programming: The next few steps 62 Sriram Srinivasan (© 1999)

Example: pgrep

1: # Usage: pgrep <regular expression> - finds files in path which match

2: # the given regular expression. This script only works on Unix.

3:

4: $regexp = shift (@ARGV) || die "usage: $0 regexp\n";

5:

6: # The PATH environment variable has path names separated by a ":".

7: foreach $dir (split(/:/,$ENV{’PATH’})) {

8: #chdir returns 1 on success. If not successful, continue.

9: if (! chdir($dir)) { next; }

10: foreach $f (<*>) {

11: # -f : "is a file", -x : "is an executable"

12: if (($f =~ /$regexp/o) && (-f $f) && (-x $f)) {

13: print "$dir/$f\n";

14: }

15: }

16:}

Perl Programming: The next few steps 63 Sriram Srinivasan (© 1999)

pgrep (contd.)

• Sample output
csh> pgrep man

/bin/catman

/bin/man

/opt/X11R5PL25/bin/xman

/usr/openwin/bin/timemanp

/usr/openwin/bin/xman

• Exercise: Deal with relative paths in PATH.

Perl Programming: The next few steps 64 Sriram Srinivasan (© 1999)

Example: today

• Sample output
csh> today

 March 1999 April 1999 May 1999

 S M Tu W Th F S S M Tu W Th F S S M Tu W Th F S

 1 2 3 4 5 6 1 2 3 1

 7 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 6 7 8

14 15 16 17 18 19 20 11 12 13 14 15 16 17 9 10 11 12 13 14 15

21 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 22

28 29 30 31 25 26 27 28 29 30 23 24 25 26 27 28 29

Perl Programming: The next few steps 65 Sriram Srinivasan (© 1999)

Example: today (contd.)

1: # today - print out last month, this month, and next month from

2: # cal program, with today in reverse video (vt100 hardcoded)

3: # demonstrates how to get a data feed from more than one process

4: $SO = "\033[7m"; #VT 100 encoding for bold start

5: $SE = "\033[m"; #VT 100 encoding for bold end

6:

7: ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
 localtime (time);

8: $mon++; # month is 0 based

9: $year += 1900; # Possible Y2k hole !!

10:# select next year and prev year "wrapping"at 12 months

11:$nmon = $mon + 1; $nyear = $year;

12:if ($nmon == 13) { $nmon = 1; $nyear++;}

13:$pmon = $mon - 1; $pyear = $year;

14:if ($pmon == 0) { $pmon = 12; $pyear--;}

15:

Perl Programming: The next few steps 66 Sriram Srinivasan (© 1999)

Example: today (contd).

16:#start three cal processes for each month

17:open (PREV, "cal $pmon $pyear |");

18:open (CUR, "cal $mon $year |");

19:open (FOLL, "cal $nmon $nyear |");

20:

21:while (! ((eof(PREV) && eof(CUR) && eof(FOLL)))) {

22: chop($prev = <PREV>);

23: chop($foll = <FOLL>);

24: chop($cur = <CUR>);

25: $len = 22;

26: if ($cur =~ s/\b$mday\b/SOmday$SE/) {# hilite today’s date

27: $len += 7; # Accounting for the highlight escape characters.

28: }

29: # printf format depends on len .. so generate the format first.

30: $fmt = sprintf("%%-20s %%-%ds %%-20s\n", $len);

31: printf ($fmt, $prev, $cur, $foll);

32:}

Perl Programming: The next few steps 67 Sriram Srinivasan (© 1999)

Example: makedepend

• Recursively prints out all include file dependencies in C/C++ files

♦ File main.c:
#include <termio.h>
#include <main.h>

♦ makedepend main.c gives

/usr/include/termio.h /usr/include/sys/ioccom.h /usr/include/sys/
termios.h /usr/include/sys/stdtypes.h /usr/include/sys/ttydev.h /
usr/include/sys/ttycom.h main.h

• Does not handle ifdef’ed sections

• Handles exclude patterns

♦ makedepend -Etty main.c gives

/usr/include/termio.h /usr/include/sys/ioccom.h /usr/include/sys/
termios.h /usr/include/sys/stdtypes.h main.h

Perl Programming: The next few steps 68 Sriram Srinivasan (© 1999)

Example: makedepend (continued)

1: $debugging = 0; # Set it to 1, to get debug output

2: foreach (@ARGV) {

3: if (/^-I(.*)/) {

4: push(@includeDirs, $1."/"); # list of include directories

5: } elsif (/^-E(.*)/) {

6: push(@excludePats, $1); # list of exclude patterns

7: } else {

8: push (@sourceFiles, $_); #list of source files

9: }

10:}

11:#add default dir. to list of include dirs

12:push(@includeDirs, "/usr/include/");

13:foreach $f (@sourceFiles) {

14: if (! -e $f) {

15: print STDERR "$f does not exist\n"; next;

16: } else {

17: print ParseIncludes($f), "\n";

18: }

Perl Programming: The next few steps 69 Sriram Srinivasan (© 1999)

Example: makedepend (continued)

19:}

20:

21:sub ParseIncludes {

22: my($f) = @_; #This routine parses the file in $f

23: my (@buf);

24: my ($retval);

25: $retval = "";

26: $indentLevel++; # for printing nested levels of include files

27: print STDERR " " x $indentLevel, "Parsing $f\n"if $debugging;

28: open (F, $f);

29: @buf = <F>; # Read the entire file in ...

30: close (F);

31: foreach $line (@buf) {

32: # extract the file name from a line like #include <file.h>

33: if ($line =~ /^\s*#include\s*[<"](.*)[>"]/o) { # Note the "/o"

34: $found = 0;

35: $inc = $1;

36: # the pathname is absolute if it exists as-is.

37: if (-e ($fullPathName = $inc)) {

Perl Programming: The next few steps 70 Sriram Srinivasan (© 1999)

Example: makedepend (continued)

38: $found = 1;

39: } else {

40: #relative Pathname - prepend each include dir. one by

41: # one and check if the full path name exists.

42: foreach $dirs (@includeDirs) {

43: if (-e ($fullPathName = $dirs.$inc)) {

44: $found = 1;

45: last;

46: }

47: }

48: }

49: if (!$found) {

50: print STDERR "$inc not found\n";

51: } else {

52: $exclude = 0;

53: #Should this filename be excluded ?

54: foreach $e (@excludePats) {

55: if ($fullPathName =~ /$e/) {

56: $exclude = 1;

Perl Programming: The next few steps 71 Sriram Srinivasan (© 1999)

Example: makedepend (continued)

57: last;

58: }

59: } #foreach

60: if (!$exclude) {

61: if (!($fileAlreadyAnalysed{$fullPathName})) {

62: $fileAlreadyAnalysed{$fullPathName} = 1;

63: $retval .= $fullPathName . " " .

64: ParseIncludes($fullPathName);

65: } else {

66: print STDERR " " x ($indentLevel+1),

67: "$fullPathName already seen\n"if $debugging;

68: }

69: }

70: }

71: }

72: }

73: $indentLevel--;

74: return $retval;

75:}

Perl Programming: The next few steps 72 Sriram Srinivasan (© 1999)

Example: makedepend (continued)

• What next?

♦ Support ifdef, ifndef. Support all standard makedepend options – –

♦ Output lines should not exceed 80 characters

Perl Programming: The next few steps 73 Sriram Srinivasan (© 1999)

Answer for Exercise 1 : A spell checker

1: print ("What word do you want to verify ? ");

2: $word = <STDIN>;

3: $lcword = lc($word);

4: if (!open (F, "dictionary")) { # Use /usr/dict/words on unix sytems

5: print ("Dictionary not found \n");

6: exit(1);

7: }

8: while ($dictWord = <F>) {

9: $result = ($lcword cmp lc($dictWord));

10: if ($result == 0) {

11: chomp($word);

12: print ("’$word’ is spelled correctly \n");

13: exit(0);

14: } elsif ($result == -1) {

15: last; # dictionary is in sorted order; no need to check further

16: }

17:}

18:chomp($word);

19:print ("’$word’ does not exist in the dictionary \n");

