
3 Sriram Srinivasan (© 1999)

Reading List

• Online reference documentation – all 500+ pages of it.

• Frequently Asked Questions List

• "Advanced Perl Programming"

♦ by Sriram Srinivasan

• "Programming perl"–

♦ by Larry Wall, Randal Schwartz, Tom Christiansen

• The Perl Journal (http://www.tpj.com)

• Internet

♦ http://www.perl.com/perl/index.html

♦ comp.lang.perl.{misc,modules,tk,announce} – USENET newsgroups

♦ Perl porters gateway

4 Sriram Srinivasan (© 1999)

References: An introduction

• A scalar can hold a reference to any piece of data

♦ Hence "$s" can be a integer, double or string–valued scalar

♦ Or, it can refer to another perl data type (scalar, hash, array, or a function)

♦ Equivalent to a C pointer

• Arrays and hashes can hold many scalars

♦ ... some or all of which can be references

♦ Hence "@array" can contain numbers, strings and/or references (to any data
types)

5 Sriram Srinivasan (© 1999)

Creating references

• In "C", two ways of creating references

♦ Referring to an existing object

int *p; int x;

p = &x;

♦ Creating anonymous objects and referring to them

p = malloc (sizeof(int) * 10); /* Creating 10 integers */

• In Perl, similar mechanisms available

6 Sriram Srinivasan (© 1999)

References to existing objects

• Referring to another scalar

$s = 20;

$rs = \$s; # Making rs point to s

• References always point to values, not to symbols

♦ The value of a reference variable is internally a pointer to another value.

• Values are reference counted to prevent inconsistency

♦ Each value keeps track of how many other objects are currently referring to it.

♦ C pointers without the memory management hassles.

s S 20

R

Data Type: Scalar (S), Reference (R), Array(A) ...

2

1

Ref.
Count ValueTypeName

rs

7 Sriram Srinivasan (© 1999)

Dereferencing

• Dereferencing: given a reference, getting underlying data

• An extra dollar does the trick

$s = 10; $rs = \$s; # Create the reference

$$rs = 50; # Dereference and modify the value.

print $s; # Should print "50"

• Notes

♦ "$s" is the value obtained by dereferencing the symbol "s".

♦ Can replace an identifier name with a scalar variable containing a reference of the
correct type

− $$x = $$x + 45; print sin($$x); # replace "s" by "$x", if $x is a scalar ref.

♦ Use ’hungarian’ notation

$s = 10; $rs = \$s; $rrs = \$rs;

print $$$rrs; # prints 10

8 Sriram Srinivasan (© 1999)

Visualizing Dereferencing

• Chase arrows starting from left

♦ Number of "$" signs == number of arrows chased

• Summary

♦ Taking a reference: $ra = \$a;

♦ Using the reference: $b = $$ra + 10;

♦ The value of a reference is a pointer to another value.

a S 10

Rra

2

2

Count ValueTypeName

Rrra 1

9 Sriram Srinivasan (© 1999)

References to lists and hashes

• Creating references to arrays and hashes

♦ No different from creating references to scalars. Put a ’\’ in front

@a = (10, "a", 3.33);

$ra = \@a;

%h = ("k1", "v1", "k2", "v2");

$rh = \%h;

a A

Rra

2

1

Count ValueTypeName

h H

Rrh

2

1

10 a 3.33

k1 v1 k2 v2

10 Sriram Srinivasan (© 1999)

Dereferencing array refs

• Remember the old rule

♦ Can replace an identifier name with a scalar variable containing a reference of the
correct type

Operation With variables Indirectly through a reference
(Given $ra = \@a)

Initialize/copy @a = (1,2,3); @$ra = (1,2,3);

Push push (@a, 1, 2, 3); push (@$ra, 1, 2, 3);

Print print @a print @$ra

Access elements $a[2] $$ra[2]

Slices @a[1,5,6] @$ra[1,5,6]

Iterate foreach $e (@a) { } foreach $e (@$ra) { }

11 Sriram Srinivasan (© 1999)

Dereferencing hash refs

• Same rule

Operation With variables Indirectly through a reference
(Given $rh = \%h;)

Initialize/copy %h = ("a" => "apple",
 "b" => "boy");

%$rh = ("a" => "apple",
 "b" => "boy");

Keys @k = keys %h; @k = keys %$rh;

Access elements $h{"a"} $$rh{"a"}

Slices @h{"a", "b"} @$rh{"a", "b"}

Iterator while (($k,$v) = each %h) {

}

while (($k,$v) = each %$rh) {

}

12 Sriram Srinivasan (© 1999)

References to subroutines

• Put a "\" before the subroutine to obtain a reference.

sub hello{
 print "Hi ", @_, "\n";
}
$r = \&hello; # Note no parentheses

• Dereferencing

&hello("Bob"); # perl-4 style subroutine call. Prints Hi Bob.
&$r("Bob"); # Indirectly through a reference.

13 Sriram Srinivasan (© 1999)

Reference notes

• Limited "compile–time" type safety

♦ Functions whose signatures are known are typechecked.

$ra = \@a;
push ($ra, 1, 2); # Compile-error : Type of arg 1 to push must be
 # array (not scalar deref)

• Use the appropriate prefix while dereferencing

$rs = \$s;
push (@$rs,1, 2); # Runtime error : "Not an ARRAY reference"

• Perl does not automatically dereference references

14 Sriram Srinivasan (© 1999)

Anonymous objects

• Why "anonymous" ?

• Anonymous scalars

$$rs = 10; # Creates a scalar value(10) and points a reference to it

• Two ways of creating anonymous arrays.

♦ Use "wrapped" references instead of array variables

@$ra = (10, 20); # Instead of saying @a = (10, 20);

$$ra[9] = 100; # Instead of saying $a[9] = 100;

push(@$rComposers, "mozart", "beethoven");

♦ Use the [list] construct

$ra = [10,20]; # Creates and returns reference to an anon. array

15 Sriram Srinivasan (© 1999)

Anonymous objects (contd.)

• Anonymous hashes are similar

%$rh = ("k1" => "v1", "k2" => "v2"); # => is alias for ","

or,

$rh = {"k1" => "v1", "k2" => "v2"};# Creates and returns

 # reference to an anon. hash

ra R

A 10 20

rh R

H k1,v1 k2,v2

Anonymous
Objects

1

1

1

1

16 Sriram Srinivasan (© 1999)

Anonymous Objects (contd.)

• Anonymous subroutines

$rs = sub { print "Arg = ", $_[0], "\n"};# Note ";" at end

&$rs(100); # Call the subroutine via the reference.

• Closures

♦ Anonymous subroutines that remember environment when created

sub getSub {

 my $arg = $_[0];

 my $retval = sub {print "Arg = $arg \n";}; # Note ";" at end

 return $retval;

}

$rs1 = getSub ("hello");

$rs2 = getSub ("world");

&$rs1(); # prints "Arg = hello"

&$rs2(); # prints "Arg = world"

17 Sriram Srinivasan (© 1999)

Arrow notation

• For accessing elements of arrays and hashes, use the –> notation
optionally:

$ra->[1] is the same as $$ra[1]

$rh->{k1} is the same as $$rh[k1]

• Calling subroutines using references

$rs->(100) is the same as &$rs(100)

18 Sriram Srinivasan (© 1999)

Nested data structures

• Remember that lists and hashes can contain any type of scalar

• List of lists

$rl = ["a", 20]; #$rl is a scalar (happens to contain a pointer)

@lol = (1, 3, $rl); # lol contains three scalars.

♦ or more simply

@lol = (1, 3, ["a", 20]);

♦ Note, this is very different from

@flatlist = (1, 3, ("a", 20));

• print does not print nested structures automatically

print "@lol" ;# prints "1 3 ARRAY(0xadcc8)"

19 Sriram Srinivasan (© 1999)

Nested data structures (contd.)

• Hash of arrays

%tvShows = (# Note the "(" and "[" usage ...
"seinfeld" => ["seinfeld", "kramer", "george", "eileen"],
"friends" => ["ross", "chandler", "joey"],
"home improvement" => ["tim", "jill", "al"],

);
print $tvShows{"seinfeld"}->[1]; # prints "kramer"
print $tvShows{"seinfeld"}[1]; # Eliminating arrow between indices

• Hash of hashes

%hoh = (
 "seinfeld" => {
 "lead" => "jerry",
 "friend" => "kramer" },

"simpsons" => {
 "lead" => "homer",
 "kid" => "bart"}
);

20 Sriram Srinivasan (© 1999)

Exercise (5 minutes)

• Write a script to print a sorted list of characters for each element in
%tvShows.

• Given a file,

seinfeld lead jerry pal kramer
simpsons lead homer kid bart

write a script to build a hash of hashes.

♦ First word in a line is the name of the show, the rest are key–value pairs.

• What happens here ?

@lol = ([1,2], [3,4]);

@newarr = ("hello", "world");

$lol[1] = @newarr;

What does @lol contain now ?

21 Sriram Srinivasan (© 1999)

ref()

• Finding out what a reference variable refers to

• Returns FALSE or a string

♦ FALSE – if it is not a reference variable at all

♦ "SCALAR", "HASH", "ARRAY" – if it is a reference to a scalar, hash or list

♦ "REF" – if it points to another reference variable

♦ "CODE" – if it refers to a subroutine

♦ "package" – depending on the package it belongs to

• Example

$a = 10;

$ra = \$a;

print ref($a); $ prints nothing, because $a is not a reference.

print ref($ra); # prints "SCALAR"

22 Sriram Srinivasan (© 1999)

Example: Pretty–print data structure

• Usage

@list = (10, {3 => 4, "hello" => [6,7]}, 11.344);

PrettyPrint (@list);

• Output

LIST: [
: 10
: HASH: {
: : 3 => 4
: : hello => {
: : : LIST: [
: : : : 6
: : : : 7
: : :]
: : }
: }
: 11.344
]

23 Sriram Srinivasan (© 1999)

Example: PrettyPrint

1: Usage: PrettyPrint (10,{3 => 4, "hello" => [6,7]}, 11.344);

2: $level = -1; # Level of indentation

3:

4: sub PrettyPrint {

5: PrintList(@_);

6: }

7:

8: sub PrintList {

9: my ($var);

10: ++$level; PrintIndented ("LIST: [");

11: foreach $var (@_) {

12: if (ref ($var)) {

13: PrintRef($var);

14: } else {

15: PrintScalar($var);

16: }

17: }

18: PrintIndented ("]"); --$level;

19:}

24 Sriram Srinivasan (© 1999)

Example: PrettyPrint (contd.)

20:sub PrintScalar {

21: ++$level; PrintIndented ($_[0]); --$level;

22:}

23:

24:sub PrintRef {

25: my $r = shift @_;

26: $refType = ref($r);

27: if ($refType eq "ARRAY") {

28: PrintList(@$r);

29: } elsif ($refType eq "SCALAR") {

30: PrintScalar($$r);

31: } elsif ($refType eq "HASH") {

32: PrintHash(%$r);

33: } elsif ($refType eq "REF") {

34: PrintRef($$r);

35: } else {

36: die ("Reference type ’$refType’ (not supported)");

37: }

38:}

25 Sriram Srinivasan (© 1999)

39:sub PrintHash {

40: my($key, $val);

41: ++$level; PrintIndented ("HASH: {");

42: while (@_) {

43: $key = shift; $val = shift; # shift applies to @_ by default

44: $val = ($val ? $val : '\"\"'); # Use ’’ for empty values

45: ++$level;

46: if (ref ($val)) {

47: PrintIndented ("$key => {");

48: PrintRef($val);

49: PrintIndented ("}");

50: } else {

51: PrintIndented ("$key => $val");

52: }

53: --$level;

54: }

55: PrintIndented ("}"); --$level;

56:}

57:sub PrintIndented {

58: $spaces = ": " x $level;

59: print "${spaces}$_[0]\n";

60:}

26 Sriram Srinivasan (© 1999)

Symbolic References

• If dereferencing fails to yield a reference, Perl checks to see if it
yields a string. If so, it uses that variable name to dereference it.

$i = 10;

$r = ’i’;

print $$r; # $r fails to yield a reference to a scalar, but it
 # does yield a string ’i’. Use that as a variable name,
 # and get its value. This expression prints 10.

• Be wary of symbolic references, because typos tolerated!

♦ use strict disables symbolic referencing.

Software Engineering with perl 27 Sriram Srinivasan (© 1999)

Software Engineering with perl

Software Engineering with perl 28 Sriram Srinivasan (© 1999)

Programming through the ages

• Procedural Programming

• Modular Programming

♦ Procedural programs inside modules

• Data Abstraction

♦ Data hiding

♦ User defined types

♦ Each module built on a user defined type

• Object Oriented Programming

♦ Data abstraction + ...

♦ Subtyping (inheritance)

♦ Polymorphism

Software Engineering with perl 29 Sriram Srinivasan (© 1999)

Modular Programming

• "package" construct

♦ All global names (for variables, functions) belong to a package, by default "main"

♦ A package declaration ends the previous package and starts a new one.

♦ Typically, packages are written in separate files, and used with the "require"
statement

• No privacy for global variables.

• Nested names (Math::Calculus::integrate())

package A;
$str = "A says Hi";
sub PrintStr {

print $str;
}
package B;
$str = "B says Hi";
sub PrintStr {

print $str;
}

require ’mod.pl’;

A::PrintStr();

B::PrintStr();

$A::str = "hello";

$B::str = "bye";

File: mod.pl Usage

Software Engineering with perl 30 Sriram Srinivasan (© 1999)

Run-time binding

• The :: operator checks call at compile–time

• Use "–>" for run–time binding

A–>PrintStr();
or even,
$module = <STDIN>;
$module–>PrintStr(); # Module name is known only at run–time

• Called subroutine gets the package name as the first argument

♦ All arguments to the subroutine are shifted one to the right

package Message;
sub say {
 print join (" ", @_), "\n";
}

Message->say("Howdy"); # Prints "Message Howdy"

Software Engineering with perl 31 Sriram Srinivasan (© 1999)

Package Initialization

• Package level initialization, and destruction

♦ BEGIN{} – All BEGIN{} blocks executed when module first loaded

♦ END{} – All END{} blocks executed when interpreter is about to exit.

• "use" – convenience function

use mod; is equivalent to saying

BEGIN { require ’mod.pm’;} in your file.

♦ Hence filenames have to end with a ’.pm’ suffix to be automatically picked up

♦ @INC has the include path

Software Engineering with perl 32 Sriram Srinivasan (© 1999)

Example: Using standard modules

• File::Find
1: use File::Find; # Exports the name "find" into the current namespace

2: find (\&RemoveUnwantedFiles, "C:/sriram");

3: $dirName = ""; # Keeps track of current directory.

4: sub RemoveUnwantedFiles {

5: if ($dirName ne $File::Find::dir) {

6: $dirName = $File::Find::dir;

7: print $dirName, "\n";

8: }

9: if (($File::Find::name =~ /\.old$|\.bak$/) &&

10: (! –d $File::Find::name)) {

11: unlink $File::Find::name; # Removes file

12: }

13:}

♦ find2perl – utiltity that converts "find" command to perl code using the above
module

Software Engineering with perl 33 Sriram Srinivasan (© 1999)

Data Abstraction and Encapsulation

• Hide data structures

♦ You never question what’s inside an O/S or a database

♦ Your libraries should be usable in a similarly transparent way

• Package subroutines provide gateway to data

♦ Subroutines represent the package’s interface

• "Employee" package

use Employee;
$e = Employee::new ("John", 80000);
Employee::give_raise($e, 20000);
print Employee::after_tax_income($e); # prints 70000

♦ User doesn’t know the data structure used to store an employee record

♦ Tomorrow, if Employee.pm uses a database, user code is not affected

♦ Only public functions can be used to update an employee’s data.

♦ Employee data is completely "encapsulated" within the package

Software Engineering with perl 34 Sriram Srinivasan (© 1999)

Example: Employee.pm

1: package Employee;

2: sub new {

3: my ($name, $salary) = @_;

4: my %emp;

5: $emp {"name"} = $name;

6: $emp {"salary"} = $salary;

7: return \%emp; # returns reference to a local variable.

8: }

9: sub give_raise {

10: my ($rEmp, $raiseAmount) = @_;

11: $rEmp–>{"salary"} += $raiseAmount;

12:}

13:sub after_tax_income {

14: my ($rEmp) = @_;

15: return $rEmp–>{"salary"} * 0.70 ; # 30% tax bracket.

16:}

Software Engineering with perl 35 Sriram Srinivasan (© 1999)

Extending Employee.pm

• Say we have hourly and regular employees

♦ Methods such as give_raise and after_tax_income have to be modified to look at
the types of employee.

♦ Different code, so different packages for the two types.

$emp1 = HourlyEmployee::new ("John", 35) ; # Hourly rate = $35.
$emp2 = RegularEmployee::new("Alice", 80000); # Annual salary =
80000

♦ Problem: Have to keep specifying the exact package for every package

print HourlyEmployee::after_tax_income ($emp1);
print RegularEmployee::after_tax_income($emp2);

• Run–time binding to the rescue

Software Engineering with perl 36 Sriram Srinivasan (© 1999)

Example: Employees as objects

• new() returns an object instead of hashref
1: use HourlyEmployee;

2: use RegularEmployee;

3: $e1 = HourlyEmployee->new("John", 80000);

4: $e2 = RegularEmployee->new("Alice", 100000);

5: $e1–>give_raise(5000);

6: print $e2–>after_tax_income(); # prints 70000

7: foreach $e (get_all_employees()) {

8: $e->give_raise($e->salary() * 0.1); # 10% raise to everyone.

9: }

• RegularEmployee::new still needs to be explicit

• $e2 "bound" to package RegularEmployee

♦ $e2–>give_raise(10000) is now automatically equivalent to
RegularEmployee::give_raise($e, 10000);

Software Engineering with perl 37 Sriram Srinivasan (© 1999)

Example : Using run–time binding

1: package RegularEmployee;

2: sub new {

3: my ($name, $salary) = @_;

4: my %emp;

5: $emp {"name"} = $name;

6: $emp {"salary"} = $salary;

7: return bless(\%emp); # returns blessed reference to a local var.

8: }

• "bless" tags an ordinary reference with the name of a package

• No changes to other subroutines.

• Commonly used style:
1: sub new {

2: my ($name, $salary) = @_;

3: # initialize, bless and return anon hashref in one fell swoop.

4: bless {"name" => $name, "salary" => $salary};

5: }

Software Engineering with perl 38 Sriram Srinivasan (© 1999)

Object Oriented Programming

• "Methods " – Fancy name for functions provided by a package

♦ Constructor – new()

♦ Static methods – functions at the package (class) level

− find_employee()

♦ Instance methods – functions that operate on a single object,

− give_raise, after_tax_income

• Polymorphism

♦ Syntax and facility to allow an object to be identified with its class

• Inheritance

♦ Employee

♦ HourlyEmployee and RegularEmployee as subtypes of Employee

Software Engineering with perl 39 Sriram Srinivasan (© 1999)

User Interfaces with Perl/Tk

1: use Tk;

2: $mw = MainWindow->new(); # Note: ’MainWindow’ automatically imported

3: $label = $mw->Label ("text"=>"hello","fg"=>"red", "bg"=>"yellow");

4: $button = $mw->Button("text" => "Push Me",

5: "command" => \&button_pushed);

6: $label->pack();

7: $button->pack();

8: MainLoop();

9:

10:sub button_pushed {

11: $label->configure ("text" => "Ouch!!");

12:}

Software Engineering with perl 40 Sriram Srinivasan (© 1999)

Database access

• DBI – Database independent interface (like ODBC, JDBC)
1: use DBI;

2: $dbname = ’empdb’; $user = ’scott’; $password = ’tiger’;

3: $conn = DBI->connect ($dbname, $user, $password,

4: ’Oracle’); # returns an Oracle ’connection’

5: # Execute sql queries

6: $conn->do ("delete from emptable where status != ’active’");

7: $conn->do ("insert into emptable (name, age) values (’john’, 23)");

8: # Or, use prepare() to reuse a template statement over and over again.

9: $stmt = $conn->prepare (

10: ’insert into emptable (name, age) values (? , ?)’);

11:$stmt->execute(’john’, 23);

12:$stmt->execute(’alice’, 32);

13:# Fetching data

14:$stmt = $conn->do("select name, age from emptable");

15:while (($name,$age) = $stmt->fetch_row()) { ... }

• Always check $DBI::err or $DBI::errstr

Software Engineering with perl 41 Sriram Srinivasan (© 1999)

CGI

• CGI — Common Gateway Interface

1: use CGI ;

2: $page = CGI->new() ;

3:

4: print $page->start_html("Example CGI.pm Form");

5: print "<H1> Example CGI.pm Form</H1>\n";

Software Engineering with perl 42 Sriram Srinivasan (© 1999)

Example: CGI (contd)

6: print

7: $page->startform(),

8: $page->em("What’s your name? "), $page->textfield(’name’),

9: "<P>What’s your Perl skill level?
",

10: $page->radio_group(

11: ’-name’ => ’skill’,

12: ’-values’ => [’Beginner’,’Intermediate’,’Expert’,

13: ’First Name Basis with Larry’],

14: ’-default’ =>’Expert’),

15: $page->br(),

16: "<P>Your favorite Perl books?
",

17: $page->checkbox_group(

18: ’-name’ => ’Favorite Books’, ’-linebreak’ =>’yes’,

19: ’-values’ => [’Learning Perl’, ’Programming Perl’,

20: ’Advanced Perl Programming’],

21: ’-default’ =>’Advanced Perl Programming’),

22: $page->endform(),$page->hr(),

23: $page->end_html(); # end of print statement

Software Engineering with perl 43 Sriram Srinivasan (© 1999)

Special methods

• sub DESTROY()

♦ Called when object is being finally destroyed.

package Employee;
... other Employee methods
sub DESTROY { # DESTROY is a keyword
 my ($obj) = @_;
 print ($obj->{name}, " has passed away \n");
}

and in the main program ...
$emp = Employee->new("John", 10000);
undef $emp ; # perl automatically calls $emp->Destroy()

• AUTOLOAD - called if subroutine not found
1: # Calling a non-existing procedure

2: Employee->Foobar();

3: package Employee;

4: sub AUTOLOAD {

5: # $AUTOLOAD is set to "Employee::Foobar"

6: print "$AUTOLOAD not found in this package\n";

7: }

Software Engineering with perl 44 Sriram Srinivasan (© 1999)

Inheritance

• A package (class) can inherit methods from other packages

♦ Package sets up a (package specific) @ISA list

package HourlyEmployee;

@ISA = ("Employee");

♦ If a method is not found in the object’s package, perl looks for it in each of the
packages mentioned in the @ISA list

♦ The method look up is depth–first (Employee may have its own @ISA)

• There is no attribute inheritance

♦ Need to follow your own conventions about structuring your data

♦ Look at the "perlbot"(bag o’ tricks) manpage for possible approaches.

• Don’t use inheritance because it looks cool!

♦ Use delegation/composition where possible

perl and C/C++ 45 Sriram Srinivasan (© 1999)

perl and C/C++

perl and C/C++ 46 Sriram Srinivasan (© 1999)

Embedding vs. Extending perl

• Embedding perl

♦ Your C/C++ program makes calls to perl

♦ Similar to Emacs and elisp, Autocad and autolisp, Microsoft Word and VBA

♦ Caller: C program, Callee : perl script

• Extending perl

♦ perl script calls your "C" functions

♦ Adding database support, communications support etc.

♦ Caller: perl , Callee: C code

• Doing both

♦ User Interface toolkits, such as TkPerl

♦ Needs extensions, so developer can write perl code to draw windows

♦ Needs embeddability, so UI code can call event–handler code written in perl

perl and C/C++ 47 Sriram Srinivasan (© 1999)

Extending Perl

• Extension: Supply "glue" code between Perl script and custom C
code

• Two tools for creating extensions

♦ h2xs, xsubpp pair – comes standard with Perl

♦ SWIG (Simplified Wrapper and Interface Generator)

− http://www.cs.utah.edu/~beazley

• Input for these tools:

♦ Interface file

♦ Typemaps

use FunMath;
$n = FunMath::factorial(10);

int factorial (int f) {
 if (f == 1)
 return 1;
 else
 return f * factorial (f – 1);
}

FunMath.pm wrapper.c

glue code

test.pl factorial.c

perl and C/C++ 48 Sriram Srinivasan (© 1999)

SWIG Process

• Write an interface file for your library

%module FunMath
int factorial (int n);

SWIG

Compile and link

FunMath.i

FunMath.html FunMath.pm FunMath_wrap.c factorial.c

perl FunMath.so (or FunMath.dll)

perl and C/C++ 49 Sriram Srinivasan (© 1999)

SWIG Process (contd)

• Compile with SWIG

swig -perl5 FunMath.i

• Compile C code and create shared library

cc -c -Kpic FunMath_wrap.c factorial.c # on solaris
cc -G -o FunMath.so FunMath_wrap.o factorial.o

• Use the package

use FunMath; # Looks for FunMath.pm,
 # which dynamically loads FunMath.so

$fact = FunMath::factorial(10);

perl and C/C++ 50 Sriram Srinivasan (© 1999)

XS Process

h2xs

Compile and link

FunMath.h

Makefile.PL FunMath.xs

factorial.c

perl FunMath.so (or FunMath.dll)

xsubpp

FunMath.c

perl and C/C++ 51 Sriram Srinivasan (© 1999)

XS Process (contd)

• Pass header file through h2xs

h2xs -x FunMath.h

• Edit Makefile.PL

use ExtUtils::MakeMaker;
WriteMakefile (
 ’Name’ => ’FunMath’,
 ’OBJECT’ => ’FunMath.o factorial.o’
);

• This can be used for SWIG also

• Compile and Install

perl Makefile.PL
make
make install

perl and C/C++ 52 Sriram Srinivasan (© 1999)

Comparison of perl with other languages

• perl

♦ Strengths

− Lots of built–in functionality
− Easy to port (and has been ported) to multiple platforms
− Text processing
− True interpreter – dynamic evaluation of code possible
− Extensive libraries and tools
− Extensively integrated with commercial libraries (databases, ui toolkits etc.)
− Untyped scalars really useful for text manipulation – numbers and strings are

automatically interchangeable.

♦ Weaknesses

− Construction of complex data structures or objects mistake prone
− Heavy reliance on all kinds of symbols $, %, @, &
− OOness feels grafted on

• Java

♦ Pros

− Good systems programming language. (Down with C++ !)
− Compile–time type checking

perl and C/C++ 53 Sriram Srinivasan (© 1999)

Comparison of perl with other languages

♦ Java strengths (contd.)

− Portability
− Lots of dynamic features – reflection, run–time class loading
− Security layer
− Multi–threaded, and true garbage collection
− Industry weight behind it

♦ Java Weaknesses

− Strict data typing gets in the way of prototyping
− Requires complex environment to work in
− Not a scripting language

• Python

♦ Strengths

− Excellent minimal, lightweight OO interpreted language – my favorite !
− Good and extensive set of class libraries
− Easy to understand
− Easy integration with C/C++
− Good text processing features

perl and C/C++ 54 Sriram Srinivasan (© 1999)

Comparison of perl with other languages

♦ Python Weaknesses:

− Much lesser number of people involved

• Tcl (Tool Command Language)

♦ Strengths

− Extremely easy to understand and integrate
− Good "glue" language between applications
− Tk

♦ Weaknesses

− Can’t handle complex data structures well at all.
− Much slower than perl for comparable system admin tasks
− Not good for large scale software engineering – code can get quite

horrendous on a larger scale.

perl and C/C++ 55 Sriram Srinivasan (© 1999)

Exercise (solution)

• Printing %tvShows
1: $, = ’ ’;

2: while (($k, $v) = each %tvShows) {

3: print "$k :", sort (@$v), "\n";

4: }

• Hash of hashes
1: open (F, 'x.dat') || die "Could not open file\n";

2: while ($l = <F>) {

3: chomp($l);s

4: @list = split (/\s+/, $l);

5: $, = ' ';

6: $show = shift @list;

7: $rh = {}; #This step is optional ...

8: %$rh = @list; # refs automatically spring into existence

9: $shows{$show} = $rh;

10:}

• @lol contains ([1,2], 2)

