
Workshop on New Horizons in Compilers. Dec 2006, Bangalore, India 1

A Thread of One’s Own

Sriram Srinivasan
University of Cambridge Computer Laboratory, 15 JJ Thomson Ave,

Cambridge, CB3 0FD, UK
Sriram.Srinivasan@cl.cam.ac.uk

Abstract. This paper demonstrates an architecture for suspending and resuming
methods in Java using a restricted form of continuation passing style (CPS)
transformation. It describes Kilim1, a toolkit to portably weave threads of
control called Fibers, through Java code. The chief contributions of this paper
are the set of design choices made for both space and time efficiency in getting
one-shot continuations to work on the JVM (in some cases, 60x faster than
competing approaches) and to address some tough issues traditionally passed
over by others, such as handling of local subroutines and constructors. We are
able to support hundreds of thousands of threads of control with switching
times of the order of 3 to 4 μs on a low-powered laptop with Sun’s JVM.

Keywords: suspend, resume, lightweight threads, actors, concurrency, java

1 Background

It is almost a truism nowadays that “concurrent programming is hard”, that it is
error-prone and not scalable. Many in the research community have repeatedly
pointed out that it doesn’t have to be this way [7], that both problems are due to
shared-state concurrency and not due to multiple threads of control. The other
generally accepted notion is that threads are heavyweight. Again, it doesn’t have to be
this way, as many real industrial implementations such as Erlang [18] and Windows
Fibers [12] and the Singularity project at Microsoft [21] have demonstrated.

Actors (also active objects) are a different (and far saner) way to deal with
concurrency. They encapsulate data, code and a thread of control of their own and
communicate by sending messages, like mini processes hooked together using pipes.
The Kilim project at the University of Cambridge seeks to introduce Java
programmers to the joys of active objects and message passing concurrency.

This paper concerns itself with the issue of making possible hundreds of thousands
of lightweight threads of control, one per actor; we consider a thread lightweight if a
programmer can start one without much ado as with Erlang processes or Ada tasks.
Threads in Java, .NET and pthreads package all fail this test, limiting us to a few
hundred threads per operating system process.

We want each active object to be able to make blocking calls such as sleep and
receive without consuming a heavyweight Java thread. The traditional approach of

1 A Kilim is a Turkish carpet where the fibers are woven tightly to create a pileless (flat) rug.

Workshop on New Horizons in Compilers. Dec 2006, Bangalore, India 2

structuring the code in a callback-oriented style results in the programmer having to
manually save relevant data into a global or a callback data structure before unrolling
the stack. Not only is it tedious to program, it obfuscates flow of control.

This paper describes in detail a way of portably transforming straightforward
sequential code containing blocking primitives into one that allows it to voluntarily
suspend itself and to cede control to another runnable actor.

2 Kilim

The Kilim package supplies a Weave tool that recognizes invocations of blocking
methods and transforms the code in the caller. It is a simple batch process that works
directly on java bytecode:

java kilim.Weave –d destdir classnames ...

How does it know which methods are pausable (can potentially block) and which

can’t? A method is pausable if it invokes the static method pause() of a class called
kilim.Fiber, or calls another pausable method, or overrides a pausable method;
the notion of being pausable is thus an interface contract, similar in spirit to a checked
exception. In order to avoid having to analyze the program as a whole or to maintain
a database of pausable methods, we require the programmer to explicitly mark a
method with a @Pausable annotation. This is an artificial restriction that can be
eased within environments such as Eclipse.

2. 1 Transforming the Code

The transformation is conceptually simple and is shown in the next listing2, with the
original on the left and the transformed code on the right. In this example, a() calls a
pausable method b(). Code injected in the three areas marked as prelude, pre-call
and post-call helps the method pack up its local operand stack, its registers and the
location of the program counter and return a status to its caller, which in turn does the
same thing. Each method gets an extra argument of type Fiber; it is this that collects
information about each activation frame as the stack is unwound and also represents
an out-of-band channel of information that tells a caller whether its callee has signaled
a pause or whether it has returned normally. The fiber is thus a continuation object
that has all the information required to restore the call hierarchy and the data in the
stack and registers, to allow the actor to resume from where it left off.

The injected code in the prelude consults the fiber and starts either at the original
starting point START in the normal case or jumps straight to the pre-call stage of b()
when being resumed. All pausable method invocations are sandwiched between calls
to Fiber.down and Fiber.up; these help the fiber keep track of the current

2 Note that we show only the transformation of a(). The one for b() would be

very similar. The transformation is on bytecode, hence the use of gotos.

Workshop on New Horizons in Compilers. Dec 2006, Bangalore, India 3

position in the call hierarchy and ensure that a copy of the current activation frame’s
program counter (pc) and status are readily available as member variables of the Fiber
object. The post-call section examines the fiber’s status after b’s return. The status
conveys two orthogonal pieces of information: (i) whether or not b() wants to yield
mid-flow and (ii) whether we already captured the current activation frame’s state in
an earlier suspend/resume cycle.

// original
@Pausable
void a() {
 x = ...
 b(); // b is pausable
 print (x);
}

// transformed code
void a(Fiber f) {
 switch (f.pc) { // prelude
 case 0: goto START;
 case 1: goto CALL_B}
 START:
 x = ...
 CALL_B: // pre_call
 f.down()
 b(f);
 f.up() // post-call
 switch (f.status) {
 case NOT_PAUSING_NO_STATE:
 goto RESUME
 case NOT_PAUSING_HAS_STATE:
 restore state
 goto RESUME
 case PAUSING_NO_STATE :
 capture state, return
 case PAUSING_HAS_STATE:
 return
 }

 RESUME:
 print (x);
}

There are several optimizations in this process. First only those methods that

contain invocations to pausable methods are modified (unlike typical CPS
transformations). Second, live-variable analysis is performed to ensure that only those
variables used downstream after a resumption point are captured. Third, the flow of
constant values and of duplicates through the registers and stack is tracked. Clearly,
these don’t need to be saved; at resumption time, these are restored swiftly using JVM
instructions that can push constants. Fourth, return is used to unwind the stack as
opposed to using exceptions as a longjmp mechanism because exceptions are
expensive by a couple of orders of magnitude. Not only do exceptions have to be
caught and rethrown at each level of the stack chain, they clear the operand stack as
well. This unnecessarily forces one to take a snapshot of the operand stack before
making a call assuming optimistically that the callee is going to block.

Workshop on New Horizons in Compilers. Dec 2006, Bangalore, India 4

2.2 Custom State objects

Each call site may have its own set of data items (some primitive types, some
references) to be saved and restored. How do you store say, one object, two integers
and one double in one place, and a single integer at another call site? It is expensive to
box all primitive types and store them into an array of Objects.

We decided instead to take the approach of creating a custom State class to store
exactly what is needed, one field per data item. Two such classes are shown next.
The fiber that’s passed down a call hierarchy accumulates a linked list of these state
objects as the stack is unwound.

class S_I extends State {
 int f0;
}

Class S_OI2D extends State
{
 Object f0;
 int f1;
 int f2;
 double f3;
}

The novel part of this scheme is that the class names and the data layout are

canonical; any call site that requires a single integer to be saved (as with a() in the
previous example) will save it in an instance of class S_I. At first, it seems like this
scheme would generate hundreds of such custom classes, one per pausable method
invocation site, but an analysis of the JDK and several popular application servers
show surprisingly low variation. The performance of this scheme is on par with other
approaches that use arrays for each primitive type and one for reference types, but its
chief advantage is that the code that saves and restores state doesn’t need to worry
about array overflow or the fact that arrays once grown needlessly occupy space.

3 Living with the JVM Verifier

The JVM verifier performs type and liveness analysis to ensure that the operand stack
has the same number and type of data items independent of the path taken to get to a
particular point and that a register or a stack element has been properly initialized
with the correct type before it can be accessed. This means that our simple prelude
shown earlier cannot arbitrarily jump into the middle of code. We solve this by having
the prelude insert dummy constants of the appropriate type to fix the stack before
doing the jump. We prefer not to restore the real state unless absolutely necessary (of
course, in the rare but worst case, we have to pop off the dummy constants and insert
the real state before resuming).

The post-call stage similarly ensures the stack has exactly one item of the
appropriate return type before executing return. In the case of a pausing return,
the returned value is a dummy constant of the method’s return type.

Workshop on New Horizons in Compilers. Dec 2006, Bangalore, India 5

3.1 Java Subroutines and jsr

Most JVM instructions are very simple to handle from the point of view of type and
data flow analysis. The jsr instruction (“jump to subroutine”) is a notable exception
that causes headaches well in excess of its usage.

The Java Virtual Machine specification has an ill-defined notion of a local
subroutine (different from a method). A subroutine is intended to support the
try/catch/finally construct where the block in the finally section must be executed
regardless of whether the try block completed normally or threw an exception that
may or may not have been caught. In all three cases, the JVM specification suggests
that the compiler emit the finally block as a subroutine, to which control can be
transferred using a special jump instruction called jsr. A corresponding ret
instruction is used to return to the instruction following the jsr.

The problems with jsr are numerous and well documented [11], so we will be
brief. The instruction pushes a JVM internal address in the stack that is subsequently
used by ret. This internal address is treated differently from other data types; it can’t
be stored in an instance variable, for example. This means that if a pausable method is
called within a subroutine, we won’t be able to jump directly to it in the prelude
because we’ll soon run into a ret instruction that expects an address to return to.

There is another problem: traditional liveness analysis (that figures out which
values are still used downstream) is only concerned with intra-procedural data flow,
not inter-procedural; that is, it can deal with hard-coded jump labels, but not a ret
instruction that says “go back to where you came from”.

Our solution was to inline (and thus duplicate) subroutines calls. As it turns out, it
isn’t as bad as it sounds; most virtual machines do the same thing internally and
perhaps more importantly, most modern java compilers don’t emit the jsr instruction
any more.

3.2 new Challenges

The new expression in Java is split in two parts at the bytecode level; the first part
allocates an empty object, the second part calls the constructor.

; new Foo(10, bar()) is translated to
new Foo ; allocate object
ldc 10 ; load 10
invokestatic bar ; call bar(), which returns int
invokespecial Foo.<init>(II) ; call constructor

The JVM tracks the fact that the empty object is uninitialized prior to the

constructor’s invocation. If bar() is a pausable method, we cannot have the prelude
jump directly to it because the JVM prevents any jumps to a target between a new
and the corresponding constructor. Our solution is equivalent to an ANF
transformation, where

new Foo(10, bar())

Workshop on New Horizons in Compilers. Dec 2006, Bangalore, India 6

is translated to:

tmp = bar()
new Foo(10, tmp)

The call to bar can now be paused.

4 Performance

We compared Kilim’s Fibers to the JavaFlow project (discussed later) currently in
development under the aegis of the Apache Jakarta project. These tests were
performed on a 1.33 GHz Apple PowerBook with 1G RAM, running Mac OS X
(10.4).

The following test shows a simple micro-benchmark that has a() calling b() in a
loop 100000 times, with the times shown in milliseconds. This test measures the
overhead of winding and unwinding the stack. b() manipulates three data items
before and after the call to pause() one long type and two strings (one of which is a
duplicate of the other). The first column shows the timings of a method that is not
pausable but does the same work as b(), the second and third show the timings of
b() when it pauses on every iteration and when it doesn’t pause.

Pausable Times in
μs. Lower is
better.

Not
pausable Not

pausing
Pausing

Kilim 21 29 156
JavaFlow 37 29 7829

JavaFlow (discussed in the next section) is quite a bit slower when pausing: 78 μs vs.
Kilim’s 1.5 μs per iteration. The reasons for this are discussed later.

The next measurement shows how the two stack up (pun intended) with b()
recursing to a stack depth of 5 and 10, the numbers showing elapsed time in
milliseconds measured over 10000 iterations.

Pausable Times in
μs. Lower is
better

Stack
depth

Not
pausable No

pause
Pause

Kilim 5 8 72 866
JavaFlow 5 57 53 15773

Kilim 10 14 142 1041
JavaFlow 10 109 113 27438

Workshop on New Horizons in Compilers. Dec 2006, Bangalore, India 7

This shows that Kilim is roughly 20x faster than JavaFlow on this benchmark.

The comparison to non-pausable methods is not strictly a fair comparison in the
tests above because we measured it without running it through the weaver, merely to
study the overhead of adding the extra code. For a true comparison, one must
compare it to a hand-coded state machine that actually implements the same
functionality. In practice, the overhead of pausing is dwarfed by the other things a
system needs to do and is round-off error when used in the context of network or
disk–intensive split phase operations

5 Discussion

There are two popular ways of building suspend/resume systems; one is continuations
and the other is coroutines.

There are several reasons why CPS (continuation passing style) transformation
runs into rough weather in the context of the Java VM. First, CPS transformation
modifies each procedure such that it never returns; it jumps ahead to the next
procedure. This process doesn’t need a stack and indeed, is quite at odds with an
environment that forces a stack on it, as is the case with a JVM. The JVM architecture
is quite stack-centric; security on the JVM relies on stack inspection and exception
handlers are installed for exceptions thrown from within a stack hierarchy. CPS
transformation also relies on a uniform transformation of all code, which would
render reflection impossible.

As for coroutines. Ana de Moura et al’s paper [13] discusses a taxonomy of
coroutines and presents the argument that a certain class of them (“stackful”) is
equivalent to one-shot continuations. In their taxonomy, the continuations presented
in this paper are stackful (because we suspend and resume a nested call hierarchy) and
asymmetric (the Fiber API implies a caller/callee relationship). The Kilim framework
also supplies an active object framework built atop the Fiber framework that offers
fully symmetric support.

Coroutines and continuations can be implemented very efficiently in a language
such as C that has direct access to memory, but even the C programming model forces
a stack view of things. This is the reason for Haskell’s GHC compiler to supply a Perl
script called “the evil mangler” to hack GCC’s output to make it support tail-calls.

We have considerably less leeway with the JVM that does not allow any form of
stack manipulation (such as swizzling stack pointers), which necessarily forces us into
the considerably more inefficient route of rewinding and restoring the stack. Within
these constraints, we have focused our attention on maximizing run-time
performance.

That said, the portability of our approach allows this framework to be readily used
in a wide-variety of applications that have built-in latencies due to human interaction
and/or networks; examples are web-servlet frameworks, workflow engines and user
interfaces. The approach can even be used in such a heavily constrained as the Java
applet sandbox provided by a web browser.

Workshop on New Horizons in Compilers. Dec 2006, Bangalore, India 8

We have deliberately chosen not to expose fibers as a first-class feature although
that functionality is there for the taking. Our chief preoccupation is to get many
threads of control that we intend to schedule automatically and allow them to be
individually cancelable or upgradeable from a management console. These properties
are difficult to achieve if the code is in direct control of yielding. Besides, it has been
our experience that programmers find it difficult to comprehend and debug the
generality of first class continuations, a feeling supported by the number of tutorials
on the subject.

The ability of continuations to translate a call chain into a list of State objects on
the heap has tempted some to use them for serializing threads. We are skeptical of this
particular application for a number of reasons, mainly because there often are non-
serializable objects such as database connections and sockets that can’t be packaged
away.

6 Related Work

6.1 Lightweight Threads

There have been a number of projects that create fast, lightweight threads at a lower
level. Capriccio 12 is a notable example. They modified the portable pthreads library
to avoid massive pre-allocation of heap/stack space, relying instead on a static
analysis of code to figure out the appropriate size and the appropriate locations in the
code to allocate more heap space. It would be nice to have this facility available in all
JVMs along with tail–call optimization.

6.2 First-Class Continuations

Continuations are powerful constructs that can be used as primitives to create all
forms of branching, including portable user-level threads, exception handling,
backtracking and others. Much literature exists on the properties of continuations,
their taxonomy and on compiling with continuations [3])

Scheme and Standard ML are among many functional languages to support first-
class continuations in the form of call/cc (call with current continuation).
Implementations of these languages in Java have run into the constraints imposed by
the JVM -- JScheme, JRuby, Kawa and Scala all punt on this feature to various
degrees. Wadler et al also reflect on this aspect [6].

Pettyjohn et al [1][2] prove and demonstrate a technique for achieving first-class
support for continuations in environments that don’t support stack inspections and
manipulation, such as Java and .NET. They also generalize all previous approaches of
achieving continuations on the JVM. Their basic idea is to break up the code into
fragments (as top level methods) where the last instruction of any fragment is a call to
the next fragment in the chain. Correspondingly, they have specialized continuation

Workshop on New Horizons in Compilers. Dec 2006, Bangalore, India 9

objects that maintain the state needed for each fragment and an overridden Invoke
method to invoke the corresponding fragment. It is structurally similar to our solution,
with a generated State class per fragment that knows exactly which fragment to
invoke.

Their approach while theoretically sound is inefficient and incomplete, as indicated
by the prototype [2]. It is inefficient because it uses exceptions to capture state
although the authors note that one could use distinguished return values or some out-
of-band signal instead to indicate pausing. Other inefficiencies include creating a
custom object per call invocation site, splitting the code into top-level procedures
which results in loops being split into virtual function calls and the stack restoration
involves a recursive invocation of Continuation frames, which means there are two
virtual function calls for every one in a scheme that already splits up into many
fragments. The transformation also incurs a function call’s overhead on every
“return”.

Their suggestion of distinguished return values pose the problem that you need to
introduce a return type for methods that were originally void and you also have the
problem of separating an ordinary value returned by the application from a
distinguished value.

The paper also does not tackle code transformation in the presence of exception
handlers and java subroutines, the traditional stumbling blocks, but there is no reason
why our techniques can’t be employed.

Their solution isn’t efficient for the JVM because they rely on the JVM to provide
tail-call optimization (the last statement in each fragment is a method call to the next
fragment).

These problems are identifiable in earlier approaches also.
There are three frameworks that transform Java bytecode internally into a style

similar to ours, but don’t surface it as a first class primitive. They are RIFE [14],
PicoThreads [24] and JavaFlow [23], the last being the most promising and under
active development.

The JavaFlow project uses thread-local variables to pass the continuation instead of
modifying method signatures, as we do. While clean, this approach is error-prone
because in the absence of any information from the interface (or some global
knowledge of all the classes in the program) it is impossible to know whether the
called interface or virtual method is pausable or not. A non-transformed piece of code
would not know to look for yielding returns. In our case, the verifier would refuse to
load the class because of the signature mismatch.

JavaFlow correctly transforms a method if it can reach a suspend() invocation.
But it unnecessarily transforms all non-pausable methods reachable from there as
well, leading to substantial code bloat.

None of these projects do liveness analysis as of this writing. This means they must
store all local variables regardless of whether they will be used after resumption.
Analysis of some popular Java projects and the JDK indicate that only about 30-40%
of the information on average is used across method invocations. Finally, none of
these projects handle subroutines and constructor calls with pausable methods. It is
worth noting here that we explicitly disallow pausable methods within constructors,
because an object should not be receiving messages until it is fully initialized, but we

Workshop on New Horizons in Compilers. Dec 2006, Bangalore, India 10

do allow a pausable method invocation in an expression that supplies a parameter to
new.

6.3 Bytecode Analysis and Insertion

Xavier Leroy’s paper [11] neatly sums up all the challenges of bytecode
verification and provides formalizations and algorithms for doing type analysis. The
Kilim weaver does value analysis in addition to types, to track duplicate values and
constants. We settled on the ASM toolkit [17] (in preference to SOOT and BCEL) for
its speed and compactness, but used our own verification and analysis engine.

7 Future

In order to make an active object framework a compelling alternative to the traditional
locking and shared-memory mindset, we need to have fast and lightweight threads.
Speed and portability are usually at odds with each other. Our approach works readily
on cell phones and big iron. On the speed end of the spectrum, there is Occam 19,
with process creation times in the 20 ns range on an 800 Mhz Pentium III, but with far
less portability. The search for a happy medium will be multi-pronged; we are
investigating modifications to the JVM and to the GCJ framework (GNU compiler for
Java 20), whilst exposing a consistent interface to the programmer. As the American
baseball player Yogi Berra once said, “When you come to a fork in the road, take it”.

Acknowledgments
I owe a considerable debt to my advisor Dr. Jean Bacon and to Reto Kramer, Dr.
Samuel Kounev and Lauri Pesonen for their support and feedback. I wish to thank Dr.
Alan Mycroft in particular for his insights and enthusiasm. This work is supported by
EPSRC grant GR/T28164.

References

1. Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, Matthias Felleisen.
Continuations from generalized stack inspection. ICFP 2005: 216-227

2. Greg Pettyjohn. A Technique for implementing First-Class Continuations. At
http://www.ccs.neu.edu/scheme/pubs/stackhack4.html

3. Robert Hieb, R. Kent Dybvig, Carl Bruggeman. Representing Control in the Presence of
First-Class Continuations. Proceedings of the ACM SIGPLAN '90 Conference on
Programming Language Design and Implementation.

4. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison Wesley.
1997.

5. Sekiguchi, T., T. Sakamoto and A. Yonezawa. Portable implementation of continuation
operators in imperative languages by exception handling, volume Advances in Exception
Handling Techniques, pages 217–233. Springer-Verlag, 2001

Workshop on New Horizons in Compilers. Dec 2006, Bangalore, India 11

6. M. Odesky and P. Wadler. Pizza into Java: Translating theory into practice. POPL. 1997
MPI

7. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur. Cooperative task
management without manual stack management. In Proceedings of the 2002 Usenix ATC,
June 2002.

8. Tao, W. A portable mechanism for thread persistence and migration. PhD thesis, University
of Utah, 2001.

9. Edoardo Biagioni, Ken Cline, Peter Lee, Chris Okasaki, Chris Stone. Safe-for-Space
Threads in Standard ML. In Higher-Order and Symbolic Computation, pages 209-225, Vol.
11, No. 2, 1998.

10. Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers Principles, Techniques, and Tools.
Addison Wesley, 1986.

11. Xavier Leroy. Java bytecode verification: algorithms and formalizations. Journal of
Automated Reasoning, 2003

12. R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer. Capriccio: Scalable
threads for internet services, in 19th ACM Symposium on Operating Systems Principles,
2003

13. Ana Ĺucia de Moura, Roberto Ierusalimschy. Revisiting Coroutines. Technical report
MCC15/04. Computer Science Department, PUC-Rio, June 2004

14. RIFE. http://rifers.org/
15. JavaFlow. http://jakarta.apache.org/commons/sandbox/javaflow/
16. Andrew Begel, Josh MacDonald, Michael Shilman. PicoThreads: Lightweight Threads in

Java. At http://citeseer.ist.psu.edu/385966.html
17. ASM bytecode toolkit

http://asm.objectweb.org/index.html
18. Erlang. http://www.erlang.org
19. occam-pi project at the University of Kent. http://www.cs.kent.ac.uk/projects/ofa/kroc/
20. GNU compiler for Java (GCJ) http://gcc.gnu.org/java/
21. Microsoft Research Singularity Project at http://research.microsoft.com/os/singularity
22. RIFE. http://rifers.org/
23. JavaFlow. http://jakarta.apache.org/commons/sandbox/javaflow/
24. Andrew Begel, Josh MacDonald, Michael Shilman. PicoThreads: Lightweight Threads in

Java. At http://citeseer.ist.psu.edu/385966.html

